Ubiquitin-specific protease 7 (USP7) is highly expressed in a variety of malignant tumors. However, the role of USP7 in regulating self-renewal and differentiation of human bone marrow derived mesenchymal stromal… Click to show full abstract
Ubiquitin-specific protease 7 (USP7) is highly expressed in a variety of malignant tumors. However, the role of USP7 in regulating self-renewal and differentiation of human bone marrow derived mesenchymal stromal cells (hBMSCs) remains unknown. Herein, we report that USP7 regulates self-renewal of hBMSCs and is required during the early stages of osteogenic, adipogenic, and chondrogenic differentiation of hBMSCs. USP7, a deubiquitinating enzyme (DUB), was found to be downregulated during hBMSC differentiation. Furthermore, USP7 is an upstream regulator of the self-renewal regulating proteins SOX2 and NANOG in hBMSCs. Moreover, we observed that SOX2 and NANOG are poly-ubiquitinated and their expression is downregulated in USP7-deficient hBMSCs. Overall, this study showed that USP7 is required for maintaining self-renewal and multipotency in cultured hBMSCs. Targeting USP7 might be a novel strategy to preserve the self-renewal capacity of hBMSCs intended for stem cell therapy.
               
Click one of the above tabs to view related content.