Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite… Click to show full abstract
Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction. Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (ΔΨm) was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than those isolated from male mice did. TNFα decreased ΔΨm in cardiomyocytes isolated from males but not from females. 17β-estradiol (E2) treatment improved mitochondrial metabolic function in cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte mitochondria from female mice were more resistant to acute stress than those from males. The female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and oxidative stress.
               
Click one of the above tabs to view related content.