LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Collagen-Sealed Polyester Vascular Prostheses Functionalized by Polycatecholamine Coatings

Photo from wikipedia

Collagen-sealed polyester (PET) prostheses are commonly used in reconstructive vascular surgery due to their self-sealing properties. To prevent post-surgical infection, different modification methods have been tested but so far none… Click to show full abstract

Collagen-sealed polyester (PET) prostheses are commonly used in reconstructive vascular surgery due to their self-sealing properties. To prevent post-surgical infection, different modification methods have been tested but so far none have showed long-term satisfactory efficiency. For this reason, in the present study, a commercial collagen-sealed PET prosthesis was coated by a highly adhesive poly (L-DOPA) layer maintaining the sealing protein without losing the original properties and functionality. This modified (as proven by SEM, FTIR, XPS and contact angle) graft exhibited comparable wettability and elasticity as pristine commercial graft, as well as reduced hemolysis-inducing effect, lowered toxicity against human endothelial cells and reduced toxicity in Danio rerio model. Poly (L-DOPA)-coated grafts were shown to bind six times more aminoglycoside antibiotic (gentamicin) than pristine graft. Poly (L-DOPA)-coated antibiotic-bound prostheses exhibited an improved antibacterial activity (bacterial growth inhibition and anti-adhesive capacity) in comparison with pristine antibiotic-bound graft. Overall, poly (L-DOPA)-coatings deposited on PET vascular grafts can effectively functionalize collagen-sealed prostheses without the loss of protein sealing layer and allow for antibiotics incorporation to provide higher safety in biomedical applications.

Keywords: vascular; sealed polyester; collagen; collagen sealed; poly dopa

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.