LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Diversity of Microbial Communities in the Soybean (Glycine max L.) Rhizosphere from Free State, South Africa

Photo from wikipedia

The plant microbiome is involved in enhancing nutrient acquisition, plant growth, stress tolerance, and reducing chemical inputs. The identification of microbial functional diversity offers the chance to evaluate and engineer… Click to show full abstract

The plant microbiome is involved in enhancing nutrient acquisition, plant growth, stress tolerance, and reducing chemical inputs. The identification of microbial functional diversity offers the chance to evaluate and engineer them for various agricultural processes. Using a shotgun metagenomics technique, this study examined the functional diversity and metabolic potentials of microbial communities in the rhizosphere of soybean genotype link 678. The dominant genera are Geobacter, Nitrobacter, Burkholderia, Candidatus, Bradyrhizobium and Streptomyces. Twenty-one functional categories were present, with fourteen of the functions being dominant in all samples. The dominant functions include carbohydrates, fatty acids, lipids and isoprenoids, amino acids and derivatives, sulfur metabolism, and nitrogen metabolism. A Kruskal–Wallis test was used to test samples’ diversity differences. There was a significant difference in the alpha diversity. ANOSIM was used to analyze the similarities of the samples and there were significant differences between the samples. Phosphorus had the highest contribution of 64.3% and was more prominent among the soil properties that influence the functional diversity of the samples. Given the functional groups reported in this study, soil characteristics impact the functional role of the rhizospheric microbiome of soybean.

Keywords: communities soybean; diversity; diversity microbial; functional diversity; soybean glycine; microbial communities

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.