LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of the Guanidinium Groups in Ligand–Receptor Binding of Arginine-Containing Short Peptides to the Slow Sodium Channel: Quantitative Approach to Drug Design of Peptide Analgesics

Photo by seteph from unsplash

Several arginine-containing short peptides have been shown by the patch-clamp method to effectively modulate the NaV1.8 channel activation gating system, which makes them promising candidates for the role of a… Click to show full abstract

Several arginine-containing short peptides have been shown by the patch-clamp method to effectively modulate the NaV1.8 channel activation gating system, which makes them promising candidates for the role of a novel analgesic medicinal substance. As demonstrated by the organotypic tissue culture method, all active and inactive peptides studied do not trigger the downstream signaling cascades controlling neurite outgrowth and should not be expected to evoke adverse side effects on the tissue level upon their medicinal administration. The conformational analysis of Ac-RAR-NH2, Ac-RER-NH2, Ac-RAAR-NH2, Ac-REAR-NH2, Ac-RERR-NH2, Ac-REAAR-NH2, Ac-PRERRA-NH2, and Ac-PRARRA-NH2 has made it possible to find the structural parameter, the value of which is correlated with the target physiological effect of arginine-containing short peptides. The distances between the positively charged guanidinium groups of the arginine side chains involved in intermolecular ligand–receptor ion–ion bonds between the attacking peptide molecules and the NaV1.8 channel molecule should fall within a certain range, the lower threshold of which is estimated to be around 9 Å. The distance values have been calculated to be below 9 Å in the inactive peptide molecules, except for Ac-RER-NH2, and in the range of 9–12 Å in the active peptide molecules.

Keywords: short peptides; ligand receptor; guanidinium groups; containing short; channel; arginine containing

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.