LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding

Photo from wikipedia

Recently, Artificial intelligence (AI) has emerged as a revolutionary field, providing a great opportunity in shaping modern crop breeding, and is extensively used indoors for plant science. Advances in crop… Click to show full abstract

Recently, Artificial intelligence (AI) has emerged as a revolutionary field, providing a great opportunity in shaping modern crop breeding, and is extensively used indoors for plant science. Advances in crop phenomics, enviromics, together with the other “omics” approaches are paving ways for elucidating the detailed complex biological mechanisms that motivate crop functions in response to environmental trepidations. These “omics” approaches have provided plant researchers with precise tools to evaluate the important agronomic traits for larger-sized germplasm at a reduced time interval in the early growth stages. However, the big data and the complex relationships within impede the understanding of the complex mechanisms behind genes driving the agronomic-trait formations. AI brings huge computational power and many new tools and strategies for future breeding. The present review will encompass how applications of AI technology, utilized for current breeding practice, assist to solve the problem in high-throughput phenotyping and gene functional analysis, and how advances in AI technologies bring new opportunities for future breeding, to make envirotyping data widely utilized in breeding. Furthermore, in the current breeding methods, linking genotype to phenotype remains a massive challenge and impedes the optimal application of high-throughput field phenotyping, genomics, and enviromics. In this review, we elaborate on how AI will be the preferred tool to increase the accuracy in high-throughput crop phenotyping, genotyping, and envirotyping data; moreover, we explore the developing approaches and challenges for multiomics big computing data integration. Therefore, the integration of AI with “omics” tools can allow rapid gene identification and eventually accelerate crop-improvement programs.

Keywords: crop; breeding; artificial intelligence; crop breeding; high throughput

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.