A great paradigm for foremost food packaging is to use renewable and biodegradable lignocellulose−based materials instead of plastic. Novel packages were successfully prepared from the cellulose paper by coating a… Click to show full abstract
A great paradigm for foremost food packaging is to use renewable and biodegradable lignocellulose−based materials instead of plastic. Novel packages were successfully prepared from the cellulose paper by coating a mixture of polylactic acid (PLA) with cinnamaldehyde (CIN) as a barrier screen and nano silica−modified stearic acid (SA/SiO2) as a superhydrophobic layer. As comprehensively investigated by various tests, results showed that the as−prepared packages possessed excellent thermal stability attributed to inorganic SiO2 incorporation. The excellent film−forming characteristics of PLA improved the tensile strength of the manufactured papers (104.3 MPa) as compared to the original cellulose papers (70.50 MPa), enhanced by 47.94%. Benefiting from the rough nanostructure which was surface−modified by low surface energy SA, the contact angle of the composite papers attained 156.3°, owning superhydrophobic performance for various liquids. Moreover, the composite papers showed excellent gas, moisture, and oil bacteria barrier property as a result of the reinforcement by the functional coatings. The Cobb300s and WVP of the composite papers were reduced by 100% and 88.56%, respectively, and their antibacterial efficiency was about 100%. As the novel composite papers have remarkable thermal stability, tensile strength, and barrier property, they can be exploited as a potential candidate for eco−friendly, renewable, and biodegradable cellulose paper−based composites for the substitute of petroleum−derived packages.
               
Click one of the above tabs to view related content.