In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease, resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate… Click to show full abstract
In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease, resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate need to find drugs to treat patients. SARS-CoV-2 papain-like cysteine protease (PLpro) not only plays an important role in the pathogenesis of the virus but is also a target protein for the development of inhibitor drugs. Therefore, to develop targeted inhibitors, it is necessary to analyse and verify PLpro sites and explore whether there are other cryptic binding pockets with better activity. In this study, first, we detected the site of the whole PLpro protein by sitemap of Schrödinger (version 2018), the cavity of LigBuilder V3, and DeepSite, and roughly judged the possible activated binding site area. Then, we used the mixed solvent dynamics simulation (MixMD) of probe molecules to induce conformational changes in the protein to find the possible cryptic active sites. Finally, the TRAPP method was used to predict the druggability of cryptic pockets and analyse the changes in the physicochemical properties of residues around these sites. This work will help promote the research of SARS-CoV-2 PLpro inhibitors.
               
Click one of the above tabs to view related content.