LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Approaches for Detection of Breast Adenocarcinoma Causing Carcinogenic Mutations

Photo from wikipedia

Genes are composed of DNA and each gene has a specific sequence. Recombination or replication within the gene base ends in a permanent change in the nucleotide collection in a… Click to show full abstract

Genes are composed of DNA and each gene has a specific sequence. Recombination or replication within the gene base ends in a permanent change in the nucleotide collection in a DNA called mutation and some mutations can lead to cancer. Breast adenocarcinoma starts in secretary cells. Breast adenocarcinoma is the most common of all cancers that occur in women. According to a survey within the United States of America, there are more than 282,000 breast adenocarcinoma patients registered each 12 months, and most of them are women. Recognition of cancer in its early stages saves many lives. A proposed framework is developed for the early detection of breast adenocarcinoma using an ensemble learning technique with multiple deep learning algorithms, specifically: Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Bi-directional LSTM. There are 99 types of driver genes involved in breast adenocarcinoma. This study uses a dataset of 4127 samples including men and women taken from more than 12 cohorts of cancer detection institutes. The dataset encompasses a total of 6170 mutations that occur in 99 genes. On these gene sequences, different algorithms are applied for feature extraction. Three types of testing techniques including independent set testing, self-consistency testing, and a 10-fold cross-validation test is applied to validate and test the learning approaches. Subsequently, multiple deep learning approaches such as LSTM, GRU, and bi-directional LSTM algorithms are applied. Several evaluation metrics are enumerated for the validation of results including accuracy, sensitivity, specificity, Mathew’s correlation coefficient, area under the curve, training loss, precision, recall, F1 score, and Cohen’s kappa while the values obtained are 99.57, 99.50, 99.63, 0.99, 1.0, 0.2027, 99.57, 99.57, 99.57, and 99.14 respectively.

Keywords: breast adenocarcinoma; breast; learning approaches; detection; deep learning

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.