LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3β-Corner Stability by Comparative Molecular Dynamics Simulations

Photo from wikipedia

This study explored the mechanisms by which the stability of super-secondary structures of the 3β-corner type autonomously outside the protein globule are maintained in an aqueous environment. A molecular dynamic… Click to show full abstract

This study explored the mechanisms by which the stability of super-secondary structures of the 3β-corner type autonomously outside the protein globule are maintained in an aqueous environment. A molecular dynamic (MD) study determined the behavioral diversity of a large set of non-homologous 3β-corner structures of various origins. We focused on geometric parameters such as change in gyration radius, solvent-accessible area, major conformer lifetime and torsion angles, and the number of hydrogen bonds. Ultimately, a set of 3β-corners from 330 structures was characterized by a root mean square deviation (RMSD) of less than 5 Å, a change in the gyration radius of no more than 5%, and the preservation of amino acid residues positioned within the allowed regions on the Ramachandran map. The studied structures retained their topologies throughout the MD experiments. Thus, the 3β-corner structure was found to be rather stable per se in a water environment, i.e., without the rest of a protein molecule, and can act as the nucleus or “ready-made” building block in protein folding. The 3β-corner can also be considered as an independent object for study in field of structural biology.

Keywords: dynamics simulations; comparative molecular; molecular dynamics; stability; stability comparative; corner stability

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.