Cancer is a leading cause of death worldwide. The search for innovative therapeutic approaches is a principal focus of medical research. Vaccine strategies targeting a number of tumor-associated antigens are… Click to show full abstract
Cancer is a leading cause of death worldwide. The search for innovative therapeutic approaches is a principal focus of medical research. Vaccine strategies targeting a number of tumor-associated antigens are currently being evaluated. To date, none have garnered significant success. Purportedly, an immunosuppressive tumor microenvironment and the accumulation of regulatory T cells contribute to a lack of tumor vaccine efficacy. Aspartyl/asparaginyl β-hydroxylase (ASPH), a promising therapeutic target, is overexpressed in a variety of malignant tumors but is expressed negligibly in normal tissues. Computer analysis predicted that ASPH expresses four peptide sequences (epitopes) capable of stimulating regulatory T cell activity. The abolition of these putative regulatory T cell epitopes increased the CD4+ and CD8+ effector T cell responses to monocyte-derived dendritic cells pulsed with a modified, epitope-depleted version of ASPH in an ex vivo human lymphoid tissue-equivalent coculture system while simultaneously decreasing the overall number of FoxP3+ regulatory T cells. These findings suggest that the efficacy of all new vaccine candidates would profit from screening and eliminating potential tolerogenic regulatory T cell epitopes.
               
Click one of the above tabs to view related content.