The tasks of quality environmental improvement and the development of new energy sources are very relevant. Hydrogen-operating electrochemical devices are strongly needed innovative ceramic materials with target properties, one of… Click to show full abstract
The tasks of quality environmental improvement and the development of new energy sources are very relevant. Hydrogen-operating electrochemical devices are strongly needed innovative ceramic materials with target properties, one of which is a high level of proton conductivity. It this paper, the possibility of proton conductivity in acceptor-doped two-layer compositions based on BaLa2In2O7 was proved for the first time. It was proved that doping leads to an increase in conductivity values up to ~1.5 orders of magnitude. The most conductive is the BaLa1.9Sr0.1In2O6.95 composition which demonstrates protonic conductivity value 2 × 10–5 S/cm at 450 °C. The acceptor-doped two-layer perovskites is a novel prospective class of proton-conducting materials, and further modification of their composition opens up a new method for the design of electrochemical energy generation devices.
               
Click one of the above tabs to view related content.