LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Contribution of Capillary Zone Electrophoresis Hyphenated with Drift Tube Ion Mobility Mass Spectrometry as a Complementary Tool to Microfluidic Reversed Phase Liquid Chromatography for Antigen Discovery

Photo by ddpmarshall from unsplash

The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase… Click to show full abstract

The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase the number of proteins identified in the sample by combining different separation strategies. A capillary zone electrophoresis (CZE) method, coupled with drift tube ion mobility (DTIMS) and quadrupole time-of-flight mass spectrometry (QTOF), was developed for antigen discovery using the human myeloma cell line LP-1. This method was first optimized to obtain a maximum number of identifications. Then, its performance in terms of uniqueness of identifications was compared to data acquired by a microfluidic reverse phase liquid chromatography (RPLC) method. The orthogonality of these two approaches and the physicochemical properties of the entities identified by CZE and RPLC were evaluated. In addition, the contribution of DTIMS to CZE was investigated in terms of orthogonality as well as the ability to provide unique information. In conclusion, we believe that the combination of CZE-DTIMS-QTOF and microfluidic RPLC provides unique information in the context of antigen discovery.

Keywords: drift tube; zone electrophoresis; capillary zone; antigen discovery; tube ion; antigen

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.