LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chronic Trazodone and Citalopram Treatments Increase Trophic Factor and Circadian Rhythm Gene Expression in Rat Brain Regions Relevant for Antidepressant Efficacy

Photo from wikipedia

Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We… Click to show full abstract

Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We studied long-term gene expression modulations induced by chronic trazodone to investigate the molecular underpinning of trazodone efficacy. Rats received acute or chronic treatment with trazodone or citalopram. mRNA expression of growth factor and circadian rhythm genes was evaluated by qPCR in the prefrontal cortex (PFCx), hippocampus, Nucleus Accumbens (NAc), amygdala, and hypothalamus. CREB levels and phosphorylation state were evaluated using Western blotting. BDNF levels were significantly increased in PFCx and hippocampus by trazodone and in the NAc and hypothalamus by citalopram. Likewise, TrkB receptor levels augmented in the PFCx after trazodone and in the amygdala after citalopram. FGF-2 and FGFR2 levels were higher after trazodone in the PFCx. The CREB phosphorylation state was increased by chronic trazodone in the PFCx, hippocampus, and hypothalamus. Bmal1 and Per1 were increased by both antidepressants after acute and chronic treatments, while Per2 levels were specifically augmented by chronic trazodone in the PFCx and NAc, and by citalopram in the PFCx, amygdala, and NAc. These findings show that trazodone affects the expression of neurotrophic factors involved in antidepressant responses and alters circadian rhythm genes implicated in the pathophysiology of depression, thus shedding light on trazodone’s molecular mechanism of action.

Keywords: chronic trazodone; expression; citalopram; circadian rhythm; trazodone

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.