LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential Immunomodulatory Effects of Head and Neck Cancer-Derived Exosomes on B Cells in the Presence of ATP

Photo by zahraamiri_ from unsplash

Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy. Tumor-derived exosomes (TEX) have immunoregulatory properties. Adenosine triphosphate (ATP) and its immunosuppressive precursor adenosine (ADO) have been found in… Click to show full abstract

Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy. Tumor-derived exosomes (TEX) have immunoregulatory properties. Adenosine triphosphate (ATP) and its immunosuppressive precursor adenosine (ADO) have been found in cancerous tissue. We investigated the effect of TEX on B cells in the presence of ATP. TEX were isolated from human HNSCC cell line (PCI-13) cultures and co-cultured with peripheral blood B cells of healthy donors, with or without TEX in different concentrations and with or without a low (20 µM) or high (2000 µM) ATP dose. We were able to demonstrate that TEX inhibit B-cell proliferation. The addition of TEX to either ATP concentration showed a decreasing trend in CD39 expression on B cells in a dose-dependent manner. High ATP levels (2000 µM) increased apoptosis and necrosis, and analysis of apoptosis-associated proteins revealed dose-dependent effects of ATP, which were modified by TEX. Altogether, TEX exhibited dual immunomodulatory effects on B cells. TEX were immunosuppressive by inhibiting B-cell proliferation; they were immunostimulatory by downregulating CD39 expression. Furthermore, TEX were able to modulate the expression of pro- and anti-apoptotic proteins. In conclusion, our data indicate that TEX play an important, but complex, role in the tumor microenvironment.

Keywords: tex; head neck; derived exosomes; presence atp; immunomodulatory effects; cells presence

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.