LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of Hierarchical Carbon Nanofibers Decorated with NiCo Nanoparticles for Highly Sensitive Vortioxetine Determination

Photo from wikipedia

A new voltammetry method for the highly sensitive antidepressant drug vortioxetine (VOR) is presented using glassy carbon electrodes modified with hierarchical carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The electrochemical behavior… Click to show full abstract

A new voltammetry method for the highly sensitive antidepressant drug vortioxetine (VOR) is presented using glassy carbon electrodes modified with hierarchical carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The electrochemical behavior of VOR was investigated by cyclic voltammetry, which indicates that its oxidation is an adsorption-controlled process with the exchange of two electrons and one proton. The effects of various factors on the VOR peak, such as supporting electrolyte type, preconcentration time, and potential, or influence of interferents, were tested using the square wave voltammetry technique (SWV). The linear voltametric response for the analyte was obtained in the concentration range from 0.01·10−6 to 3.0·10−6 mol L−1 with the detection limit of 1.55·10−9 mol L−1 for a preconcentration time of 60 s. The proposed method was successfully applied for highly sensitive VOR determination in complex matrices such as tablets, urine, and plasma with good recovery parameter.

Keywords: carbon; carbon nanofibers; nico nanoparticles; vortioxetine; hierarchical carbon; highly sensitive

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.