LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of L-Arginine-NO System in Female Reproduction: A Narrative Review

Photo from wikipedia

Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine… Click to show full abstract

Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine and methylarginines to outcome measures of women undergoing in vitro fertilization (IVF). This review attempts to summarize the expression and function of the essential elements of this system with particular reference to the different stages of female reproduction. A literature search was performed on the PubMed and Google Scholar systems. Publications were selected for evaluation according to the results presented in the Abstract. The regulatory role of NO during the period of folliculogenesis, oocyte maturation, fertilization, embryogenesis, implantation, placentation, pregnancy, and delivery was surveyed. The major aspects of cellular l-arginine uptake via cationic amino acid transporters (CATs), arginine catabolism by nitric oxide synthases (NOSs) to NO and l-citrulline and by arginase to ornithine, and polyamines are presented. The importance of NOS inhibition by methylated arginines and the redox-sensitive elements of the process of NO generation are also shown. The l-arginine-NO system plays a crucial role in all stages of female reproduction. Insufficiently low or excessively high rates of NO generation may have adverse influences on IVF outcome.

Keywords: system; role; female reproduction; arginine; arginine system

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.