LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles

Photo by enecta from unsplash

The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (Mφ) and triggers the activation of… Click to show full abstract

The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (Mφ) and triggers the activation of signal transducer and activator of transcription 6 (STAT6). Since the IL4/STAT6 pathway reduces Mφ responsiveness to inflammation in a targeted and precise manner, IL4 delivery offers personalized possibilities to overcome inflammatory events. Despite its therapeutic potential, the limited success of IL4-targeted delivery is hampered by inefficient vehicles. Magnetically assisted technologies offer precise and tunable nanodevices for the delivery of cytokines by combining contactless modulation, high tissue penetration, imaging features, and low interference with the biological environment. Although superparamagnetic iron oxide nanoparticles (SPION) have shown clinical applicability in imaging, SPION-based approaches have rarely been explored for targeted delivery and cell programming. Herein, we hypothesized that SPION-based carriers assist in efficient IL4 delivery to Mφ, favoring a pro-regenerative phenotype (M2φ). Our results confirmed the efficiency of SPION-IL4 and Mφ responsiveness to SPION-IL4 with evidence of STAT6-mediated polarization. SPION-IL4-treated Mφ showed increased expression of M2φ associated-mediators (IL10, ARG1, CCL2, IL1Ra) when compared to the well-established soluble IL4. The ability of SPION-IL4 to direct Mφ polarization using sophisticated magnetic nanotools is valuable for resolving inflammation and assisting innovative strategies for chronic inflammatory conditions.

Keywords: spion; il4; inflammatory; polarization; delivery; spion il4

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.