LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Degradation Kinetics and Structural Analysis of Related Substances of Ceftobiprole by HPLC with UV and MS/MS Detection

Photo from wikipedia

Ceftobiprole is a novel β-lactam antibiotic, active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant S. aureus and penicillin-resistant Streptococcus pneumoniae. To artificially generate potential degradation products (DPs) of ceftobiprole that may be… Click to show full abstract

Ceftobiprole is a novel β-lactam antibiotic, active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant S. aureus and penicillin-resistant Streptococcus pneumoniae. To artificially generate potential degradation products (DPs) of ceftobiprole that may be formed under relevant storage conditions, acidic, alkaline, oxidative, photolytic and thermolytic stress tests were performed in both solution and solid state. A novel selective HPLC method was developed for the separation of ceftobiprole from its DPs and synthesis by-products (SBPs) using Kinetex Biphenyl column, ammonium acetate buffer pH 5.8 and acetonitrile. The kinetic studies demonstrated the low stability of ceftobiprole in alkaline solution, in the presence of an oxidising agent and under irradiation with near UV. In the solid state, ceftobiprole underwent oxidation when the powder was irradiated with visible light and UV. Based on mass spectroscopic analysis, 13 new structural formulas of SBPs and DPs were proposed, along with molecular formulas for three other DPs obtained in solution and four oxidative DPs characteristic of solid-state degradation.

Keywords: degradation kinetics; study degradation; solid state; analysis; degradation; ceftobiprole

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.