LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Gd3+ and Mn2+-Co-Doped Scheelite-Type Ceramics—Their Structural, Optical and Magnetic Properties

Photo by kellysikkema from unsplash

New Gd3+- and Mn2+-co-doped calcium molybdato-tungstates with the chemical formula of Ca1−3x−yMny▯xGd2x(MoO4)1−3x(WO4)3x (labeled later as CaMnGdMoWO), where ▯ denotes vacant sites in the crystal lattice, 0 < x ≤ 0.2500… Click to show full abstract

New Gd3+- and Mn2+-co-doped calcium molybdato-tungstates with the chemical formula of Ca1−3x−yMny▯xGd2x(MoO4)1−3x(WO4)3x (labeled later as CaMnGdMoWO), where ▯ denotes vacant sites in the crystal lattice, 0 < x ≤ 0.2500 and y = 0.0200 as well as 0 < y ≤ 0.0667 and x = 0.1667 were successfully synthesized by high-temperature solid-state reaction method and combustion route. Obtained ceramic materials crystallize in scheelite-type structure with space group I41/a. Morphological features and grain sizes of powders under study were investigated by SEM technique. Spectroscopic studies within the UV-vis spectral range were carried out to estimate the direct band gap (Eg) and Urbach energy (EU) of obtained powders. EPR studies confirmed the existence of two types of magnetic objects, i.e., Mn2+ and Gd3+ ions, and significant antiferromagnetic (AFM) interactions among them.

Keywords: gd3 mn2; scheelite type; mn2 doped; new gd3

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.