LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extracellular Vesicles as Mediators of Nickel-Induced Cancer Progression

Photo by nci from unsplash

Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified… Click to show full abstract

Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified as a human group I carcinogen; however, the underlying mechanisms governing Ni-induced carcinogenesis are still being elucidated. Here, we present data demonstrating that Ni exposure generates EVs that contribute to Ni-mediated carcinogenesis and cancer progression. Human bronchial epithelial (BEAS-2B) cells and human embryonic kidney-293 (HEK293) cells were chronically exposed to Ni to generate Ni-treated cells (Ni-6W), Ni-transformed BEAS-2B cells (Ni-3) and Ni-transformed HEK293 cells (HNi-4). The signatures of EVs isolated from Ni-6W, Ni-3, HNi-4, BEAS-2B, and HEK293 were analyzed. Compared to their respective untreated cells, Ni-6W, Ni-3, and HNi-4 released more EVs. This change in EV release coincided with increased transcription of the EV biogenesis markers CD82, CD63, and flotillin-1 (FLOT). Additionally, EVs from Ni-transformed cells had enriched protein and RNA, a phenotype also observed in other studies characterizing EVs from cancer cells. Interestingly, both epithelial cells and human umbilical vein endothelial (HUVEC) cells showed a preference for taking up Ni-altered EVs compared to EVs released from the untreated cells. Moreover, these Ni-altered EVs induced inflammatory responses in both epithelial and endothelial cells and increased the expression of coagulation markers in endothelial cells. Prolonged treatment of Ni-alerted EVs for two weeks induced the epithelial-to-mesenchymal transition (EMT) in BEAS-2B cells. This study is the first to characterize the effect of Ni on EVs and suggests the potential role of EVs in Ni-induced cancer progression.

Keywords: extracellular vesicles; induced cancer; cancer progression; evs; cancer

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.