LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liraglutide Counteracts Endoplasmic Reticulum Stress in Palmitate-Treated Hypothalamic Neurons without Restoring Mitochondrial Homeostasis

Photo by elisa_ventur from unsplash

One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased… Click to show full abstract

One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.

Keywords: endoplasmic reticulum; liraglutide counteracts; reticulum stress; palmitate; hypothalamic neurons

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.