LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Non-functional γ-Aminobutyric Acid Shunt Pathway in Cyanobacterium Synechocystis sp. PCC 6803 Enhances δ-Aminolevulinic Acid Accumulation under Modified Nutrient Conditions

Photo by ldxcreative from unsplash

To redirect carbon flux from the γ-aminobutyric acid (GABA) shunt to the δ-aminolevulinic acid (ALA) biosynthetic pathway, we disrupted the GABA shunt route of the model cyanobacterium Synechocystis sp. PCC… Click to show full abstract

To redirect carbon flux from the γ-aminobutyric acid (GABA) shunt to the δ-aminolevulinic acid (ALA) biosynthetic pathway, we disrupted the GABA shunt route of the model cyanobacterium Synechocystis sp. PCC 6803 by inactivating Gdc, the gene-encoding glutamate decarboxylase. The generated ΔGdc strain exhibited lower intracellular GABA and higher ALA levels than the wild-type (WT) one. The ΔGdc strain’s ALA levels were ~2.8 times higher than those of the WT one when grown with levulinic acid (LA), a competitive inhibitor of porphobilinogen synthase. Abiotic stress conditions including salinity induced by 10 mM NaCl and cold at 4 °C increased the ALA levels in ΔGdc up to ~2.5 and 5 ng g−1 cell DW, respectively. The highest ALA production in the ΔGdc cyanobacteria grown in BG11 medium was triggered by glucose induction, followed by glutamate supplementation with 60 mM of LA, thereby resulting in ~360 ng g−1 cell DW of ALA, that is >300-fold higher ALA accumulation than that observed in ΔGdc cyanobacteria grown in normal medium. Increased levels of the gdhA (involved in the interconversion of α-ketoglutarate to glutamate) and the hemA (a major regulatory target of the ALA biosynthetic pathway) transcripts occurred in ΔGdc cyanobacteria grown under modified growth conditions. Our study provides critical insight into the facilitation of ALA production in cyanobacteria.

Keywords: ala; aminobutyric acid; aminolevulinic acid; cyanobacterium synechocystis; acid; shunt

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.