LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multifunctional Dental Resin Composite with Sr-N-Doped TiO2 and n-HA Fillers for Antibacterial and Mineralization Effects

Photo by umanoide from unsplash

Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics.… Click to show full abstract

Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics. The clinical utility of restorations is improved by cleaning bacteria nearby and remineralizing marginal crevices. In this study, a novel multifunctional dental resin composite (DRC) composed of Sr-N-co-doped titanium dioxide (Sr-N-TiO2) nanoparticles and nano-hydroxyapatite (n-HA) reinforcing fillers with improved antibacterial and mineralization properties is proposed. The experimental results showed that the anatase-phase Sr-N-TiO2 nanoparticles were synthesized successfully. After this, the curing depth (CD) of the DRC was measured from 4.36 ± 0.18 mm to 5.10 ± 0.19 mm, which met the clinical treatment needs. The maximum antibacterial rate against Streptococcus mutans (S. mutans) was 98.96%, showing significant inhibition effects (p < 0.0001), which was experimentally verified to be derived from reactive oxygen species (ROS). Meanwhile, the resin exhibited excellent self-remineralization behavior in an SBF solution, and the molar ratio of Ca/P was close to that of HA. Moreover, the relative growth rate (RGR) of mouse fibroblast L929 indicated a high biocompatibility, with the cytotoxicity level being 0 or I. Therefore, our research provides a suitable approach for improving the antibacterial and mineralization properties of DRCs.

Keywords: antibacterial mineralization; resin composite; multifunctional dental; dental resin; resin

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.