In this study, an antibacterial and shape-memory chitosan cryogel with high blood absorption and fast recovery from non-compressible wounds was prepared using a one-step method. Herein, we prepared a shape-memory-reduced… Click to show full abstract
In this study, an antibacterial and shape-memory chitosan cryogel with high blood absorption and fast recovery from non-compressible wounds was prepared using a one-step method. Herein, we prepared a shape-memory-reduced graphene/chitosan (rGO-CTS) cryogel using a one-step method with a frozen mixing solution of chitosan, citric acid, dopamine, and graphene oxide, before treating it with alkaline solutions. The alkaline solution not only promoted the double cross-linking of chitosan but also induced dopamine to form polydopamine-reducing graphene oxide. Scanning electron microscope (SEM) images showed that the rGO-CTS cryogel possessed a uniform porous network structure, attributing excellent water-induced shape-memory properties. Moreover, the rGO-CTS cryogel exhibited good mechanical properties, antibacterial activity, and biocompatibility. In mouse liver trauma models, the rGO-CTS cryogel showed good blood clotting and hemostatic capabilities. Therefore, this composite cryogel has great potential as a new hemostatic material for application to non-compressible wounds.
               
Click one of the above tabs to view related content.