LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Different Guests on Pyrolysis Mechanism of α-CL−20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures

Photo from wikipedia

The host–guest inclusion strategy has the potential to surpass the limitations of energy density and suboptimal performances of single explosives. The guest molecules can not only enhance the detonation performance… Click to show full abstract

The host–guest inclusion strategy has the potential to surpass the limitations of energy density and suboptimal performances of single explosives. The guest molecules can not only enhance the detonation performance of host explosives but also can enhance their stability. Therefore, a deep analysis of the role of guest influence on the pyrolysis decomposition of the host–guest explosive is necessary. The whole decomposition reaction stage of CL-20/H2O, CL-20/CO2, CL-20/N2O, CL-20/NH2OH was calculated by ReaxFF-MD. The incorporation of CO2, N2O and NH2OH significantly increase the energy levels of CL-20. However, different guests have little influence on the initial decomposition paths of CL-20. The Ea1 and Ea2 values of CL-20/CO2, CL-20/N2O, CL-20/NH2OH systems are higher than the CL-20/H2O system. Clearly, incorporation of CO2, N2O, NH2OH can inhibit the initial decomposition and intermediate decomposition stage of CL-20/H2O. Guest molecules become heavily involved in the reaction and influence on the reaction rates. k1 of CL-20/N2O and CL-20/NH2OH systems are significantly larger than that of CL-20/H2O at high temperatures. k1 of CL-20/CO2 system is very complex, which can be affected deeply by temperatures. k2 of the CL-20/CO2, CL-20/N2O systems is significantly smaller than that of CL-20/H2O at high temperatures. k2 of CL-20/NH2OH system shows little difference at high temperatures. For the CL-20/CO2 system, the k3 value of CO2 is slightly higher than that for CL-20/H2O, CL-20/N2O, CL-20/NH2OH systems, while the k3 values of N2 and H2O are slightly smaller than that for the CL-20/H2O, CL-20/N2O, CL-20/NH2OH systems. For the CL-20/N2O system, the k3 value of CO2 is slightly smaller than that for CL-20/H2O, CL-20/CO2, CL-20/NH2OH systems. For the CL-20/NH2OH system, the k3 value of H2O is slightly larger than that for CL-20/H2O, CL-20/CO2, CL-20/N2O systems. These mechanisms revealed that CO2, N2O and NH2OH molecules inhibit the early stages of the initial decomposition of CL-20 and play an important role for the decomposition subsequently.

Keywords: system; n2o nh2oh; co2 n2o; h2o; decomposition; high temperatures

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.