LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic… Click to show full abstract

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.

Keywords: based catalysts; levulinic acid; hydrogenation furfural; furfural levulinic

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.