LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Transcriptome Analysis Reveals OsBGs and OsGSLs Influence Sugar Transport through Callose Metabolism under Heat Stress in Rice

Photo from wikipedia

Heat or high temperature stress have caused huge damage to many crops and have become the largest threat in terms of the future. Although a huge amount of research has… Click to show full abstract

Heat or high temperature stress have caused huge damage to many crops and have become the largest threat in terms of the future. Although a huge amount of research has been conducted to explore the mechanisms of heat tolerance and many achievements were accomplished, the mechanism by which how heat stress (HS) influences the yield is still unclear. In this study, RNA-seq analysis indicated that nine 1,3-β-glucanases (BGs) belonging to the carbohydrate metabolic pathway were expressed differently during heat treatment. Therefore, we identified the BGs and glucan-synthase-likes (GSLs) in three rice ecotypes and processed the analyses of gene gain and loss, phylogenetic relationship, duplication, and syntenic relationship. We found the possibility of an environmental adaption based on BGs and GSLs during evolution. Submicrostructure and dry matter distribution analysis confirmed that HS might block the endoplasmic sugar transport pathway by increasing callose synthesis, which may lead to decreased yield and quality in rice production. This study provides a new clue regarding rice yield and quality under HS and provides guidance to rice cultivation and heat tolerance breeding.

Keywords: heat stress; sugar transport; rice; analysis; heat

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.