We present a novel thermodynamic approach to the epigenomics of cancer metabolism. Here, any change in a cancer cell’s membrane electric potential is completely irreversible, and as such, cells must… Click to show full abstract
We present a novel thermodynamic approach to the epigenomics of cancer metabolism. Here, any change in a cancer cell’s membrane electric potential is completely irreversible, and as such, cells must consume metabolites to reverse the potential whenever required to maintain cell activity, a process driven by ion fluxes. Moreover, the link between cell proliferation and the membrane’s electric potential is for the first time analytically proven using a thermodynamic approach, highlighting how its control is related to inflow and outflow of ions; consequently, a close interaction between environment and cell activity emerges. Lastly, we illustrate the concept by evaluating the Fe2+-flux in the presence of carcinogenesis-promoting mutations of the TET1/2/3 gene family.
               
Click one of the above tabs to view related content.