LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disassembly of Amyloid Fibril with Infrared Free Electron Laser

Photo from wikipedia

Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The structure is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the fibril state without denaturants. Infrared… Click to show full abstract

Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The structure is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the fibril state without denaturants. Infrared free electron laser (IR-FEL) is an intense picosecond pulsed laser that is oscillated through a linear accelerator, and the oscillation wavelengths are tunable from 3 μm to 100 μm. Many biological and organic compounds can be structurally altered by the mode-selective vibrational excitations due to the wavelength variability and the high-power oscillation energy (10–50 mJ/cm2). We have found that several different kinds of amyloid fibrils in amino acid sequences were commonly disassembled by the irradiation tuned to amide I (6.1–6.2 μm) where the abundance of β-sheet decreased while that of α-helix increased by the vibrational excitation of amide bonds. In this review, we would like to introduce the IR-FEL oscillation system briefly and describe combination studies of experiments and molecular dynamics simulations on disassembling amyloid fibrils of a short peptide (GNNQQNY) from yeast prion and 11-residue peptide (NFLNCYVSGFH) from β2-microglobulin as representative models. Finally, possible applications of IR-FEL for amyloid research can be proposed as a future outlook.

Keywords: electron laser; infrared free; amyloid fibril; free electron

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.