Possible triggers and genetic markers involved in pathogenesis of amiodarone-induced thyrotoxicosis (AIT) or amiodarone-induced hypothyroidism (AIH) are currently unknown. This study aimed to analyze the association between polymorphisms in the… Click to show full abstract
Possible triggers and genetic markers involved in pathogenesis of amiodarone-induced thyrotoxicosis (AIT) or amiodarone-induced hypothyroidism (AIH) are currently unknown. This study aimed to analyze the association between polymorphisms in the genes involved in thyroid hormones biosynthesis and metabolism. Thirty-nine consecutive patients with confirmed type 2 amiodarone-induced thyrotoxicosis were enrolled; 39 patients on the same therapy for at least 6 months without thyroid pathology were included as a control group. A comparative study was carried out to determine the distribution and genotypes of polymorphic markers of the (Na)-iodide symporter (NIS) genes (rs7250346, C/G substitution), thyroid stimulating hormone receptor (TSHR) (rs1991517, C/G substitution), thyroid peroxidase (TPO) (rs 732609, A/C substitution), DUOX 1-1 (C/T substitution), DUOX 1-2 (G/T substitution), DUOX 1-3 (C/T substitution), glutathione peroxidase 3 (GPX3) (C/T substitution), glutathione peroxidase 4 (GPX4) (C/T substitution). Statistical analysis was performed using Prism (Version 9.0.0 (86)). This study showed that the risk of AIT2 is 3.18 times higher in the G/T of the DUOX1 gene carriers. This study is the first report of genetic markers associated with amiodarone-related adverse events conducted in humans. The obtained results indicate the necessity for a personalized approach to amiodarone administration.
               
Click one of the above tabs to view related content.