LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and Functional Implication of Natural Variants of Gαs

Photo by erol from unsplash

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are among the most important cellular signaling components, especially G protein-coupled receptors (GPCRs). G proteins comprise three subunits, Gα, Gβ, and Gγ. Gα is… Click to show full abstract

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are among the most important cellular signaling components, especially G protein-coupled receptors (GPCRs). G proteins comprise three subunits, Gα, Gβ, and Gγ. Gα is the key subunit, and its structural state regulates the active status of G proteins. Interaction of guanosine diphosphate (GDP) or guanosine triphosphate (GTP) with Gα switches G protein into basal or active states, respectively. Genetic alteration in Gα could be responsible for the development of various diseases due to its critical role in cell signaling. Specifically, loss-of-function mutations of Gαs are associated with parathyroid hormone-resistant syndrome such as inactivating parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) signaling disorders (iPPSDs), whereas gain-of-function mutations of Gαs are associated with McCune–Albright syndrome and tumor development. In the present study, we analyzed the structural and functional implications of natural variants of the Gαs subtype observed in iPPSDs. Although a few tested natural variants did not alter the structure and function of Gαs, others induced drastic conformational changes in Gαs, resulting in improper folding and aggregation of the proteins. Other natural variants induced only mild conformational changes but altered the GDP/GTP exchange kinetics. Therefore, the results shed light on the relationship between natural variants of Gα and iPPSDs.

Keywords: function; implication natural; parathyroid hormone; natural variants; structural functional; functional implication

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.