LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intracellular Helix-Loop-Helix Domain Modulates Inactivation Kinetics of Mammalian TRPV5 and TRPV6 Channels

Photo by colinwatts from unsplash

TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered as gatekeepers of this cation… Click to show full abstract

TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered as gatekeepers of this cation transcellular transport. Intracellular Ca2+ exerts a negative control over the activity of these channels by promoting inactivation. TRPV5 and TRPV6 inactivation has been divided into fast and slow phases based on their kinetics. While slow inactivation is common to both channels, fast inactivation is characteristic of TRPV6. It has been proposed that the fast phase depends on Ca2+ binding and that the slow phase depends on the binding of the Ca2+/Calmodulin complex to the internal gate of the channels. Here, by means of structural analyses, site-directed mutagenesis, electrophysiology, and molecular dynamic simulations, we identified a specific set of amino acids and interactions that determine the inactivation kinetics of mammalian TRPV5 and TRPV6 channels. We propose that the association between the intracellular helix-loop-helix (HLH) and the TRP helix (TDh) domains favors the faster inactivation kinetics observed in mammalian TRPV6 channels.

Keywords: inactivation kinetics; trpv6; helix; trpv5 trpv6

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.