LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expression Dynamics of CA IX Epitope in Cancer Cells under Intermittent Hypoxia Correlates with Extracellular pH Drop and Cell Killing by Ureido-Sulfonamide CA IX Inhibitors

Photo from wikipedia

Carbonic anhydrase IX (CA IX) is a membrane-bound CA isozyme over-expressed in many hypoxic tumor cells, where it ensures pH homeostasis and has been implicated in tumor survival, metastasis and… Click to show full abstract

Carbonic anhydrase IX (CA IX) is a membrane-bound CA isozyme over-expressed in many hypoxic tumor cells, where it ensures pH homeostasis and has been implicated in tumor survival, metastasis and resistance to chemotherapy and radiotherapy. Given the functional importance of CA IX in tumor biochemistry, we investigated the expression dynamics of CA IX in normoxia, hypoxia and intermittent hypoxia, which are typical conditions experienced by tumor cells in aggressive carcinomas. We correlated the CA IX epitope expression dynamics with extracellular pH acidification and with viability of CA IX-expressing cancer cells upon treatment with CA IX inhibitors (CAIs) in colon HT-29, breast MDA-MB-231 and ovarian SKOV-3 tumor cell models. We observed that the CA IX epitope expressed under hypoxia by these cancer cells is retained in a significant amount upon reoxygenation, probably to preserve their proliferation ability. The extracellular pH drop correlated well with the level of CA IX expression, with the intermittent hypoxic cells showing a similar pH drop to fully hypoxic ones. All cancer cells showed higher sensitivity to CA IX inhibitors (CAIs) under hypoxia as compared to normoxia. The tumor cell sensitivity to CAIs under hypoxia and intermittent hypoxia were similar and higher than in normoxia and appeared to be correlated with the lipophilicity of the CAI.

Keywords: tumor; expression dynamics; cancer cells; intermittent hypoxia

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.