LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparison of Bonded and Nonbonded Zinc(II) Force Fields with NMR Data

Photo by nate_dumlao from unsplash

Classical molecular dynamics (MD) simulations are widely used to inspect the behavior of zinc(II)-proteins at the atomic level, hence the need to properly model the zinc(II) ion and the interaction… Click to show full abstract

Classical molecular dynamics (MD) simulations are widely used to inspect the behavior of zinc(II)-proteins at the atomic level, hence the need to properly model the zinc(II) ion and the interaction with its ligands. Different approaches have been developed to represent zinc(II) sites, with the bonded and nonbonded models being the most used. In the present work, we tested the well-known zinc AMBER force field (ZAFF) and a recently developed nonbonded force field (NBFF) to assess how accurately they reproduce the dynamic behavior of zinc(II)-proteins. For this, we selected as benchmark six zinc-fingers. This superfamily is extremely heterogenous in terms of architecture, binding mode, function, and reactivity. From repeated MD simulations, we computed the order parameter (S2) of all backbone N-H bond vectors in each system. These data were superimposed to heteronuclear Overhauser effect measurements taken by NMR spectroscopy. This provides a quantitative estimate of the accuracy of the FFs in reproducing protein dynamics, leveraging the information about the protein backbone mobility contained in the NMR data. The correlation between the MD-computed S2 and the experimental data indicated that both tested FFs reproduce well the dynamic behavior of zinc(II)-proteins, with comparable accuracy. Thus, along with ZAFF, NBFF represents a useful tool to simulate metalloproteins with the advantage of being extensible to diverse systems such as those bearing dinuclear metal sites.

Keywords: zinc proteins; behavior zinc; zinc; nmr data; bonded nonbonded; force

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.