LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot Melt Extrusion as an Effective Process in the Development of Mucoadhesive Tablets Containing Scutellariae baicalensis radix Extract and Chitosan Dedicated to the Treatment of Oral Infections

Photo by aronvisuals from unsplash

Hot Melt Extrusion (HME) technology was developed to obtain blends containing lyophilized Scutellariae baicalensis root extract and chitosan in order to improve the rheological properties of the obtained blends, including… Click to show full abstract

Hot Melt Extrusion (HME) technology was developed to obtain blends containing lyophilized Scutellariae baicalensis root extract and chitosan in order to improve the rheological properties of the obtained blends, including tableting and compressibility properties. (Hydroxypropyl)methyl cellulose (HPMC) in 3 different ratios was used as amorphous matrix formers. The systems were characterized using X-ray powder diffraction (PXRD), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), and in vitro release, permeability, and microbiological activity studies. Then, the extrudates were used to prepare tablets in order to give them the appropriate pharmaceutical form. HPMC-based systems released baicalin more slowly, resulting in delayed peaks in the acceptor fluid. This behavior can be explained by the fact that HPMC swells significantly, and the dissolved substance must have diffused through the polymer network before being released. The best tabletability properties are provided by the formulation containing the extrudate with lyophilized extract HPMC 50:50 w/w. These tablets offer a valuable baicalin release profile while maintaining good mucoadhesive properties that condition the tablet’s retention in the application site and the effectiveness of therapy.

Keywords: extract chitosan; melt extrusion; scutellariae baicalensis; hot melt

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.