LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of the Difference between Day and Night Temperatures on the Growth, Photosynthesis, and Metabolite Accumulation of Tea Seedlings

Photo from wikipedia

Currently, the effects of the differences between day and night temperatures (DIFs) on tea plant are poorly understood. In order to investigate the influence of DIFs on the growth, photosynthesis,… Click to show full abstract

Currently, the effects of the differences between day and night temperatures (DIFs) on tea plant are poorly understood. In order to investigate the influence of DIFs on the growth, photosynthesis, and metabolite accumulation of tea plants, the plants were cultivated under 5 °C (25/20 °C, light/dark), 10 °C (25/15 °C, light/dark), and 15 °C (25/10 °C, light/dark). The results showed that the growth rate of the new shoots decreased with an increase in the DIFs. There was a downward trend in the photosynthesis among the treatments, as evidenced by the lowest net photosynthetic rate and total chlorophyll at a DIF of 15 °C. In addition, the DIFs significantly affected the primary and secondary metabolites. In particular, the 10 °C DIF treatment contained the lowest levels of soluble sugars, tea polyphenols, and catechins but was abundant in caffeine and amino acids, along with high expression levels of theanine synthetase (TS3) and glutamate synthase (GOGAT). Furthermore, the transcriptome data revealed that the differentially expressed genes were enriched in valine, leucine, and isoleucine degradation, flavone/flavonol biosyntheses, flavonoid biosynthesis, etc. Therefore, we concluded that a DIF of 10 °C was suitable for the protected cultivation of tea plants in terms of the growth and the quality of a favorable flavor of tea, which provided a scientific basis for the protected cultivation of tea seedlings.

Keywords: day night; growth; photosynthesis metabolite; tea; night temperatures; growth photosynthesis

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.