LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma Surface Modification of 3Y-TZP at Low and Atmospheric Pressures with Different Treatment Times

Photo by akshayspaceship from unsplash

The efficiency of plasma surface modifications depends on the operating conditions. This study investigated the effect of chamber pressure and plasma exposure time on the surface properties of 3Y-TZP with… Click to show full abstract

The efficiency of plasma surface modifications depends on the operating conditions. This study investigated the effect of chamber pressure and plasma exposure time on the surface properties of 3Y-TZP with N2/Ar gas. Plate-shaped zirconia specimens were randomly divided into two categories: vacuum plasma and atmospheric plasma. Each group was subdivided into five subgroups according to the treatment time: 1, 5, 10, 15, and 20 min. Following the plasma treatments, we characterized the surface properties, including wettability, chemical composition, crystal structure, surface morphology, and zeta potential. These were analyzed through various techniques, such as contact angle measurement, XPS, XRD, SEM, FIB, CLSM, and electrokinetic measurements. The atmospheric plasma treatments increased zirconia’s electron donation (γ−) capacity, while the vacuum plasma treatments decreased γ− parameter with increasing times. The highest concentration of the basic hydroxyl OH(b) groups was identified after a 5 min exposure to atmospheric plasmas. With longer exposure times, the vacuum plasmas induce electrical damage. Both plasma systems increased the zeta potential of 3Y-TZP, showing positive values in a vacuum. In the atmosphere, the zeta potential rapidly increased after 1 min. Atmospheric plasma treatments would be beneficial for the adsorption of oxygen and nitrogen from ambient air and the generation of various active species on the zirconia surface.

Keywords: surface; atmospheric plasma; plasma treatments; plasma surface; plasma; treatment

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.