LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro and In Vivo Biocompatibility of Natural and Synthetic Pseudomonas aeruginosa Pyomelanin for Potential Biomedical Applications

Photo from wikipedia

Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a… Click to show full abstract

Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a black–brown negatively charged extracellular polymer of homogentisic acid produced during L-tyrosine catabolism. Due to its chemical properties and the presence of active functional groups, pyomelanin is a candidate for the development of new antioxidant, antimicrobial and immunomodulatory formulations. This work aimed to obtain bacterial water-soluble (Pyosol), water-insoluble (Pyoinsol) and synthetic (sPyo) pyomelanin variants and characterize their chemical structure, thermosensitivity and biosafety in vitro and in vivo (Galleria mallonella). FTIR analysis showed that aromatic ring connections in the polymer chains were dominant in Pyosol and sPyo, whereas Pyoinsol had fewer Car-Car links between rings. The differences in chemical structure influence the solubility of various forms of pyomelanins, their thermal stability and biological activity. Pyosol and Pyoinsol showed higher biological safety than sPyo. The obtained results qualify Pyosol and Pyoinsol for evaluation of their antimicrobial, immunomodulatory and proregenerative activities.

Keywords: vitro vivo; vivo biocompatibility; pseudomonas aeruginosa; biocompatibility natural; natural synthetic; synthetic pseudomonas

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.