LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility

Photo from wikipedia

Thermal insulating composites are indispensable in electronic applications; however, their poor thermal conductivity and flexibility have become bottlenecks for improving device operations. Hexagonal boron nitride (BN) has excellent thermal conductivity… Click to show full abstract

Thermal insulating composites are indispensable in electronic applications; however, their poor thermal conductivity and flexibility have become bottlenecks for improving device operations. Hexagonal boron nitride (BN) has excellent thermal conductivity and insulating properties and is an ideal filler for preparing thermally insulating polymer composites. In this study, we report a method to fabricate BN/polyurethane (PU) composites using an improved nonsolvent-induced phase separation method with binary solvents to improve the thermal performance and flexibility of PU. The stress and strain of BN60/PU are 7.52 ± 0.87 MPa and 707.34 ± 38.34%, respectively. As prepared, BN60/PU composites with unordered BN exhibited high thermal conductivity and a volume resistivity of 0.653 W/(m·K) and 23.9 × 1012 Ω·cm, which are 218.71 and 39.77% higher than that of pure PU, respectively. Moreover, these composite films demonstrated a thermal diffusion ability and maintained good integrity after 1000 bending cycles, demonstrating good mechanical and thermal reliability for practical use. Our findings provide a practical route for the production of flexible materials for efficient thermal management.

Keywords: boron nitride; conductivity; polyurethane composites; conductivity flexibility; thermal conductivity

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.