Wolbachia has been shown to induce thelytokous parthenogenesis in Trichogramma species, which have been widely used as biological control agents around the world. Little is known about the changes of… Click to show full abstract
Wolbachia has been shown to induce thelytokous parthenogenesis in Trichogramma species, which have been widely used as biological control agents around the world. Little is known about the changes of bacterial community after restoring arrhenotokous or bisexual reproduction in the T. pretiosum. Here, we investigate the emergence of males of T. pretiosum through curing experiments (antibiotics and high temperature), crossing experiments, and high-throughput 16S ribosomal RNA sequencing (rRNA-seq). The results of curing experiments showed that both antibiotics and high temperatures could cause the thelytokous T. pretiosum to produce male offspring. Wolbachia was dominant in the thelytokous T. pretiosum bacterial community with 99.01% relative abundance. With the relative abundance of Wolbachia being depleted by antibiotics, the diversity and relative content of other endosymbiotic bacteria increased, and the reproductive mode reverted from thelytoky to arrhenotoky in T. pretiosum. Although antibiotics did not eliminate Wolbachia in T. pretiosum, sulfadiazine showed an advantage in restoring entirely arrhenotokous and successive bisexual reproduction. This study was the first to demonstrate the bacterial communities in parthenogenetic Trichogramma before and after antibiotics or high-temperature treatment. Our findings supported the hypothesis that Wolbachia titer-dependence drives a reproduction switch in T. pretiosum between thelytoky and arrhenotoky.
               
Click one of the above tabs to view related content.