LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anion Exchange Membrane Based on BPPO/PECH with Net Structure for Acid Recovery via Diffusion Dialysis

Photo by ldxcreative from unsplash

In order to improve the performance of the anion exchange membrane (AEM) used in acid recovery from industrial wastewater, this study adopted a new strategy in which brominated poly (2,6-dimethyl-1,4-phenyleneoxide)… Click to show full abstract

In order to improve the performance of the anion exchange membrane (AEM) used in acid recovery from industrial wastewater, this study adopted a new strategy in which brominated poly (2,6-dimethyl-1,4-phenyleneoxide) (BPPO) and polyepichlorohydrin (PECH) were used as the polymer backbone of the prepared membrane. The new anion exchange membrane with a net structure was formed by quaternizing BPPO/PECH with N,N,N,N-tetramethyl-1,6-hexanediamine (TMHD). The application performance and physicochemical property of the membrane were adjusted by changing the content of PECH. The experimental study found that the prepared anion exchange membrane had good mechanical performance, thermostability, acid resistance and an appropriate water absorption and expansion ratio. The acid dialysis coefficient (UH+) of anion exchange membranes with different contents of PECH and BPPO was 0.0173–0.0262 m/h at 25 °C. The separation factors (S) of the anion exchange membranes were 24.6 to 27.0 at 25 °C. Compared with the commercial BPPO membrane (DF-120B), the prepared membrane had higher values of UH+ and S in this paper. In conclusion, this work indicated that the prepared BPPO/PECH anion exchange membrane had the potential for acid recovery using the DD method.

Keywords: anion exchange; exchange; acid recovery; exchange membrane

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.