LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Putative Wound Healing Induction Functions of Exosomes Isolated from IMMUNEPOTENT CRP

Photo from wikipedia

Chronic wounds in diabetic patients can take months or years to heal, representing a great cost for the healthcare sector and impacts on patients’ lifestyles. Therefore, new effective treatment alternatives… Click to show full abstract

Chronic wounds in diabetic patients can take months or years to heal, representing a great cost for the healthcare sector and impacts on patients’ lifestyles. Therefore, new effective treatment alternatives are needed to accelerate the healing process. Exosomes are nanovesicles involved in the modulation of signaling pathways that can be produced by any cell and can exert functions similar to the cell of origin. For this reason, IMMUNEPOTENT CRP, which is a bovine spleen leukocyte extract, was analyzed to identify the proteins present and is proposed as a source of exosomes. The exosomes were isolated through ultracentrifugation and shape-size, characterized by atomic force microscopy. The protein content in IMMUNEPOTENT CRP was characterized by EV-trap coupled to liquid chromatography. The in silico analyses for biological pathways, tissue specificity, and transcription factor inducement were performed in GOrilla ontology, Panther ontology, Metascape, and Reactome. It was observed that IMMUNEPOTENT CRP contains diverse peptides. The peptide-containing exosomes had an average size of 60 nm, and exomeres of 30 nm. They had biological activity capable of modulating the wound healing process, through inflammation modulation and the activation of signaling pathways such as PIP3-AKT, as well as other pathways activated by FOXE genes related to specificity in the skin tissue.

Keywords: wound healing; crp; ontology; exosomes isolated; immunepotent crp

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.