LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Network Pharmacology and Multi-Omics Combination Approach to Reveal the Effect of Strontium on Ca2+ Metabolism in Bovine Rumen Epithelial Cells

Photo from wikipedia

Strontium (Sr) belongs to the same group in the periodic table as calcium (Ca). Sr level can serve as an index of rumen Ca absorption capacity; however, the effects of… Click to show full abstract

Strontium (Sr) belongs to the same group in the periodic table as calcium (Ca). Sr level can serve as an index of rumen Ca absorption capacity; however, the effects of Sr on Ca2+ metabolism are unclear. This study aims to investigate the effect of Sr on Ca2+ metabolism in bovine rumen epithelial cells. The bovine rumen epithelial cells were isolated from the rumen of newborn Holstein male calves (n = 3, 1 day old, 38.0 ± 2.8 kg, fasting). The half maximal inhibitory concentration (IC50) of Sr-treated bovine rumen epithelial cells and cell cycle were used to establish the Sr treatment model. Transcriptomics, proteomics, and network pharmacology were conducted to investigate the core targets of Sr-mediated regulation of Ca2+ metabolism in bovine rumen epithelial cells. The data of transcriptomics and proteomics were analyzed using bioinformatic analysis (Gene Ontology and Kyoto Encyclopedia of genes/protein). Quantitative data were analyzed using one-way ANOVA in GraphPad Prism 8.4.3 and the Shapiro–Wilk test was used for the normality test. Results presented that the IC50 of Sr treatment bovine rumen epithelial cells for 24 h was 43.21 mmol/L, and Sr increased intracellular Ca2+ levels. Multi-omics results demonstrated the differential expression of 770 mRNAs and 2436 proteins after Sr treatment; network pharmacology and reverse transcriptase polymerase chain reaction (RT-PCR) revealed Adenosylhomocysteine hydrolase-like protein 2 (AHCYL2), Semaphoring 3A (SEMA3A), Parathyroid hormone-related protein (PTHLH), Transforming growth factor β2 (TGF-β2), and Cholesterol side-chain cleavage enzyme (CYP11A1) as potential targets for Sr-mediated Ca2+ metabolism regulation. Together these results will improve the current comprehension of the regulatory effect of Sr on Ca2+ metabolism and pave a theoretical basis for Sr application in bovine hypocalcemia.

Keywords: pharmacology; epithelial cells; ca2 metabolism; rumen epithelial; bovine rumen

Journal Title: International Journal of Molecular Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.