LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Recommender System for Programming Online Judges Using Fuzzy Information Modeling

Photo by alterego_swiss from unsplash

Programming online judges (POJs) are an emerging application scenario in e-learning recommendation areas. Specifically, they are e-learning tools usually used in programming practices for the automatic evaluation of source code… Click to show full abstract

Programming online judges (POJs) are an emerging application scenario in e-learning recommendation areas. Specifically, they are e-learning tools usually used in programming practices for the automatic evaluation of source code developed by students when they are solving programming problems. Usually, they contain a large collection of such problems, to be solved by students at their own personalized pace. The more problems in the POJ the harder the selection of the right problem to solve according to previous users performance, causing information overload and a widespread discouragement. This paper presents a recommendation framework to mitigate this issue by suggesting problems to solve in programming online judges, through the use of fuzzy tools which manage the uncertainty related to this scenario. The evaluation of the proposal uses real data obtained from a programming online judge, and shows that the new approach improves previous recommendation strategies which do not consider uncertainty management in the programming online judge scenarios. Specifically, the best results were obtained for short recommendation lists.

Keywords: recommendation; information; recommender system; programming online; online judges; system programming

Journal Title: Informatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.