Green zinc-metal-pillared bentonite mediated curcumin extract (Zn@CN/BE) was synthesized and characterized as a low-cost and multifunctional (curcumin-based phytochemicals, zinc-capped curcumin, zinc/curcumin complexes, and zinc-pillared bentonite) antioxidant and antidiabetic agent with… Click to show full abstract
Green zinc-metal-pillared bentonite mediated curcumin extract (Zn@CN/BE) was synthesized and characterized as a low-cost and multifunctional (curcumin-based phytochemicals, zinc-capped curcumin, zinc/curcumin complexes, and zinc-pillared bentonite) antioxidant and antidiabetic agent with enhanced activity. The activities of the Zn@CN/BE structure were assessed in comparison with curcumin and ZnO as individual components and in the presence of miglitol and acarbose commercial drugs as controls. The structure validated remarkable antioxidant activities against the common oxidizing radicals (nitric oxide (94.7 ± 1.83%), DPPH (96.4 ± 1.63%), ABTS (92.8 ± 1.33%), and superoxide (62.3 ± 1.63 %)) and inhibition activities against the main oxidizing enzymes (porcine α-amylase (89.3 ± 1.13%), murine α-amylase (70.8 ± 1.54%), pancreatic α-Glucosidase (99.3 ± 1.23%), intestinal α-Glucosidase (97.7 ± 1.24%), and amyloglucosidase (98.4 ± 1.64%)). The reported activities are higher than the activities of individual components and the studied ascorbic acid as well as the commercial drugs. This enhancement effect was assigned to the impact of the zinc pillaring process within the curcumin/bentonite host, which induced the stability, dispersions, and interactive interface of the essential active compounds in addition to the solubility and release rate of the intercalated curcumin extract. This paper recommends the application of the Zn@CN/BE structure as an enhanced, low-cost, biocompatible, safe, and simply produced antioxidant and antidiabetic agent.
               
Click one of the above tabs to view related content.