LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance

Photo by javardh from unsplash

This article describes the effective synthesis of colloidal SnO2 quantum dots and ZnWO4 nanorods using wet chemical synthesis and hydrothermal synthesis, respectively. The resulting ZnWO4-SnO2 core–shell nanorod heterostructure is then… Click to show full abstract

This article describes the effective synthesis of colloidal SnO2 quantum dots and ZnWO4 nanorods using wet chemical synthesis and hydrothermal synthesis, respectively. The resulting ZnWO4-SnO2 core–shell nanorod heterostructure is then made, and its structural, optical, and morphological properties are assessed using XRD, SEM, TEM, and DRS. The heterojunction’s structural confinement increases the exposure of its reactive sites, and its electronic confinement promotes its redox activity. The heterostructure subsequently exhibits a smaller bandgap and better light-harvesting capabilities, resulting in increased photoelectrochemical performance. The heterostructure of core–shell nanorods shows promise for usage in a range of optoelectronic devices and effective solar energy conversion.

Keywords: core shell; sno2 core; znwo4 sno2; sno2

Journal Title: Inorganics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.