The fruit fly Drosophila melanogaster is a model species used for a wide range of studies. Contamination of Drosophila cultures with bacterial infection is common and is readily eradicated by… Click to show full abstract
The fruit fly Drosophila melanogaster is a model species used for a wide range of studies. Contamination of Drosophila cultures with bacterial infection is common and is readily eradicated by antibiotics. Neomycin antibiotics can cause stress to D. melanogaster’s larvae and imagoes, which may affect the interpretation of the results of research using culture from neomycin-based medium. In the present study, fluctuating asymmetry (FA), one of the important bioindicators of stress, was measured. Larvae and imagoes of a wild-type D. melanogaster strain were exposed to various concentrations of neomycin. The size of anal papillae and selected wing veins were measured using scanning electron and light microscopy, respectively. Next, the FA was checked. The values obtained for larval anal papillae appeared to be concentration-dependant; the FA indices increased with the concentration of neomycin. The wing FA presented a large but variable correlation, depending on the measured vein. However, the mean length of veins was the highest for the control group, with neomycin-exposed groups showing lower values. The research showed that neomycin may cause sublethal stress in D. melanogaster, which manifests in increased FA indices. This suggests that neomycin can cause physiological and developmental stress in insects, which should be taken into account when interpreting the results of studies using these model organisms.
               
Click one of the above tabs to view related content.