LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interactive Effects of an Herbivore-Induced Plant Volatile and Color on an Insect Community in Cranberry

Photo by efekurnaz from unsplash

Simple Summary Plants often increase their odor emissions after herbivore feeding damage, which in turn attract natural enemies of the herbivores such as insect predators. Synthetic versions of these so-called… Click to show full abstract

Simple Summary Plants often increase their odor emissions after herbivore feeding damage, which in turn attract natural enemies of the herbivores such as insect predators. Synthetic versions of these so-called herbivore-induced plant volatiles (HIPVs) can be used to monitor populations of beneficial insects in agriculture. In addition, HIPVs can potentially attract the herbivores themselves. However, whether synthetic HIPVs interact with color to affect insect communities in farms is unknown. In this study, we tested a lure containing the HIPV methyl salicylate (named ‘PredaLure’) in combination with five different colored sticky traps to monitor insect populations in cranberry fields (also known as bogs). We found that hoverflies (also called flower flies or syrphid flies), whose larvae are predators of several insect pests including aphids and thrips, were attracted to PredaLure but this attraction was affected by the color of the trap. In fact, the numbers of hoverflies were 2–4 higher on yellow and white traps baited with PredaLure than on unbaited traps. Irrespective of trap color, plant-feeding thrips were also more attracted to PredaLure-baited than unbaited traps. Our study provides guidelines for the use of odor-baited colored sticky traps to monitor natural enemies such as hoverflies in an agricultural system like cranberries. Abstract Synthetic herbivore-induced plant volatiles (HIPVs) could be used to monitor insect populations in agroecosystems, including beneficial insects such as natural enemies of herbivores. However, it is unknown whether insect responses to HIPVs are influenced by visual cues, e.g., color. We hypothesized that the HIPV methyl salicylate (MeSA) interacts with color to affect insect captures on sticky traps. To test this, we conducted a 5 × 2 factorial field experiment in a commercial cranberry farm to monitor numbers of insect predators, parasitoids, and herbivores by using five colored sticky traps that were either baited with a MeSA lure (named ‘PredaLure’) or unbaited. At the community level, PredaLure increased captures of predators. At the individual-taxon level, captures of the hoverfly Toxomerus marginatus (Diptera: Syrphidae) and thrips (Thysanoptera: Thripidae) were higher on PredaLure-baited traps. However, only captures of T. marginatus on PredaLure-baited traps interacted significantly with color such that the numbers of this hoverfly on yellow and white traps were 2–4 times higher when baited with PredaLure. This study is the first to document the interactive effects of synthetic HIPVs and color on an insect community. Our findings have implications for optimal selection of HIPV-baited colored traps to monitor natural enemy populations in agroecosystems.

Keywords: insects; color; predalure; herbivore induced; induced plant

Journal Title: Insects
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.