LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Individual and Additive Effects of Insecticide and Mating Disruption in Integrated Management of Navel Orangeworm in Almonds

Photo by homajob from unsplash

Simple Summary Mating disruption is an increasingly important part of pest management for the navel orangeworm Amyelois transitella. Industry groups have long supported mating disruption research and development with the… Click to show full abstract

Simple Summary Mating disruption is an increasingly important part of pest management for the navel orangeworm Amyelois transitella. Industry groups have long supported mating disruption research and development with the divergent objectives of both minimizing damage from this key pest and reducing insecticide used on these crops. It is therefore important to know whether the benefits of mating disruption and insecticide are additive or, alternatively, if using both together provides no additional benefit over either alone. Ten years of data from research trials in a large commercial almond orchard found that the benefits of mating disruption are generally additive with lower damage if both are used together than either alone. Substantial year-to-year variability in navel orangeworm damage was also evident, even with stringent management. These findings indicate that the combination of mating disruption and insecticide can reduce the impact of navel orangeworm damage on the almond industry. Further improvements in monitoring and predictions of navel orangeworm abundance and damage are necessary for mating disruption to effectively contribute to the industry goal of reduction of insecticide use by 25%. Abstract Damage from Amyelois transitella, a key pest of almonds in California, is managed by destruction of overwintering hosts, timely harvest, and insecticides. Mating disruption has been an increasingly frequent addition to these management tools. Efficacy of mating disruption for control of navel orangeworm damage has been demonstrated in experiments that included control plots not treated with either mating disruption or insecticide. However, the navel orangeworm flies much farther than many orchard pests, so large plots of an expensive crop are required for such research. A large almond orchard was subdivided into replicate blocks of 96 to 224 ha and used to compare harvest damage from navel orangeworm in almonds treated with both mating disruption and insecticide, or with either alone. Regression of navel orangeworm damage in researcher-collected harvest samples from the interior and center of management blocks on damage in huller samples found good correlation for both and supported previous assumptions that huller samples underreport navel orangeworm damage. Blocks treated with both mating disruption and insecticide had lower damage than those treated with either alone in 9 of the 10 years examined. Use of insecticide had a stronger impact than doubling the dispenser rate from 2.5 to 5 per ha, and long-term comparisons of relative navel orangeworm damage to earlier- and later-harvested varieties revealed greater variation than previously demonstrated. These findings are an economically important confirmation of trade-offs in economic management of this critical pest. Additional monitoring tools and research tactics will be necessary to fulfill the potential of mating disruption to reduce insecticide use for navel orangeworm.

Keywords: disruption; mating disruption; management; navel orangeworm; damage

Journal Title: Insects
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.